桌面六轴机器人

一个品简介

OBOT-VII是一款用于机器人工程及智能制造工程专业实践教学的六轴机械臂,额定负载3Kg,运动范围650mm,采用高精度伺服电机及谐波减速机、模块化可拆卸式本体结构设计,可进行机械臂本体装配实验。双系统设计,可实现在示教器、ROS下使用及开发。通过配套的场景应用模块,实现物体的搬运码垛、轨迹示教、零件装配等典型的工业工艺应用。

通过开展对应的实训课程,帮助学生了解工业机器人的主要机械结构、控制方式及作业特点,了解 ROS系统的软件架构,熟悉工业机器人示教器的使用方法,熟悉机器人算法的快速开发、测试和验证。从而掌握机械原理、机器人示教编程、轨迹规划、机器人运动学与动力学、传感与自动控制等科目的相关知识。

性能特点

- **可重复,可拆装**:模块化可拆装式结构设计,每个关节均可重复拆卸 与装配、加深机器人结构相关知识的掌握。
- **多功能,高安全**: 具备典型的六轴工业机器人要素,可示教编程,实现桌面六自由度机械臂与安全工业机器人教学平台的自由切换。采用驱控一体直流伺服电机,使用更安全。
- **易教学,易联动**:配置装配、码垛、轨迹等多方位训练的场景应用模块、可联动其他设备,易于机器人工程专业实践教学开展。
- 多系统,强性能:配置工业示教系统与ROS系统专用控制器,支持系统随时切换使用。ROS系统提供标准接口和SDK,提供基于ROS开发的UI交互,支持仿真、Moveit!和二次开发,使用及操作简单方便。工业示教系统可提供工业级示教编程和多种应用案例。

主要技术参数

参数名称	参数
整机工作范围	≥650mm
重复定位精度	±0.1mm
额定负载	3Kg
自由度	6
底座尺寸	380mm×550mm
本体重量	≤19Kg
安装方式	水平安装
外壳材质	铝合金
各轴转动范围	J1: ±360° J2: +80°-120° J3: +180°-90° J4: ±360° J5: +200°-60° J6: ±360°
各轴最大角速度	J1: 230°/s J2: 230°/s J3: 360°/s J4: 360°/s J5: 360°/s J6: 360°/s
主控制器	工业级机械臂控制器
接口配置	以太网接口,I/O,USB
电源输入	220V, 50HZ

可支撑课程及实践项目

器 支撑课程

机械设计基础 机械制造基础 机电传动控制 智能传感技术与系统 微机原理与接口技术 Python语言程序设计

机器人学基础 机器人机构学 机器人控制 机电系统分析与设计/机器人系统分析与设计

🔅 实践项目

机械类

- ✓ 机械臂零部件认知
- ✓ 机械臂零部件识图与测绘
- ✓ 机械臂组装
- ✓ 关节传动设计与精度析
- ✓ 机械零件设计方法
- ✓ 机械臂末端执行器设计

.

控制类

- ✓ 控制器核心器件认知
- ✓ 控制系统原理认知
- ✓ 控制系统接口程序设计
- ✓ 机器人电机驱动器配置
- ✓ 动力学模型建立与仿真
- ✓ 运动路径规划仿真与现

.....

综合类

- ✓ 物块码垛任务示教器编程
- ✓ 物料装配任务示教器编程
- ✓ 轨迹规划任务示教器编程
- ✓ 机械臂系统分析与优化设计
- ✓ 工艺岛搭建与设计

.